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Abstract— Pitch spelling addresses the question of how
to derive traditional score notation from pitch classes or
MIDI numbers. In this paper, we motivate that the diatonic
notes in a piece of music are easier to spell correctly
than the non-diatonic notes. Then we investigate 1) whether
the generally used method of calculating the proportion of
correctly spelled notes to evaluate pitch spelling models can
be replaced by a method that concentrates only on the non-
diatonic pitches, and 2) if an extra evaluation measure to
distinguish the incorrectly spelled diatonic notes from the in-
correctly spelled non-diatonic notes would be useful. To this
end, we calculate the typical percentage of pitch classes that
correspond to diatonic notes and check whether those pitch
classes do indeed refer to diatonic notes in a piece of music.
We explore extensions of the diatonic set. Finally, a good
performing pitch spelling algorithm is investigated to see
what percentage of its incorrectly spelled notes are diatonic
notes. It turns out that a substantial part of the incorrectly
spelled notes consist of diatonic notes, which means that the
standard evaluation measure of pitch spelling algorithms
cannot be replaced by a measure that only concentrates on
non-diatonic notes without losing important information. We
propose instead that two evaluation measures could be added
to the standard correctness rate to be able to give a more
complete view of a pitch spelling model.

I. INTRODUCTION

The process of pitch spelling addresses the question of
which note names should be given to specific pitches.
In most computer applications tones are encoded as
MIDI pitch numbers which represent the different semi
tones. For example, middle C is represented by pitch
number 60, the C�/D� immediately following middle C
is represented by pitch number 61, and so on. It may be
clear that MIDI pitch numbers do not distinguish between
enharmonically equivalent notes. However, in tonal music,
there is a lot of information in the note names about
harmony, melody, scales, and intonation. Therefore, it is
very useful to be able to disambiguate the music encoded
as MIDI pitch numbers and transcribe it into note names.
Pitch spelling is the process that deals with this problem.
There has been an increasing interest in pitch spelling
algorithms over the last decades, and various algorithms
have been proposed [11], [18], [13], [14], [15], [16], [3],
[5], [6], [8].

These proposed pitch spelling algorithms have been
shown to give a high correctness rate, somewhere between
97% and 100% correctly spelled notes. One could think
that all these pitch spelling algorithms work extremely
well or wonder whether it is just very easy to get a good
result in this field. If a part of the spelling process is

indeed easy, it might be worth to focus on the more
difficult part instead.

The correctness rate of a pitch spelling algorithm is
generally indicated by the percentage of notes spelled
correctly, a measure that has been named note accuracy
[14]. It has however been proposed by Cambouropoulos
[2] to measure the percentage of correctly spelled notes
among the notes with accidentals instead, which implies
that the notes without accidentals are not difficult to
spell correctly. Meredith [14] writes in answer to this:
”However, there is no guarantee that every mis-spelled
note is a note that has an accidental in the original score”.

Still, one could intuitively think that some notes are
easier to spell correctly than others. In the field of pitch
spelling it would then be interesting to concentrate on
the most difficult notes. Let us consider a piece in C
major. A pitch indicated by pitch class1 0 can indicate a
C, D��, or another enharmonic equivalent note, however
in C major it would most likely indicate a C. For the same
reason, pitch class 2 would most likely indicate a D (as
opposed to e.g. a C�� or E��) in C major. We can thus
understand that the notes comprising the scale of the key
in which the music is written, are usually easy to spell.
For a piece in C major, this approach is the same as that
of Cambouropoulos [2] referred to above, since in this
case all non-diatonic notes are the notes with accidentals.

The fact that some notes may be easy to spell does
not yet mean that all these diatonic notes are necessarily
spelled correctly, and thus we should find out how many
diatonic notes are indeed spelled correctly. This will help
us to investigate the question whether the generally used
method of comparing pitch spelling models by their note
accuracy can be replaced by measuring the percentage of
notes spelled correctly among the non-diatonic notes, to
so give a clearer picture of the problem and its search
space.

This paper focuses on the following issues within the
field of pitch spelling. First of all, in section II, we
calculate the percentage of diatonic pitches in a piece
of music. Knowing this, we could say something about
the size of the area to focus on in pitch spelling. If the
percentage of diatonic notes is high, this could explain
the success of many pitch spelling algorithms. We define
the diatonic pitch classes in a piece of music as the
pitch classes or MIDI numbers that correspond to the

1Pitch classes represent the same information as MIDI pitch numbers,
only under octave equivalence.
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diatonic set of the (given) key of the piece. For example,
to calculate the percentage of diatonic pitch classes in
a piece of music in C major, we count the instances
of the pitch classes 0, 2, 4, 5, 7, 9, 11 corresponding to
the notes C, D, E, F, G, A, B. However, the pitch class
0 corresponds also to the note D�� or B�, and so on.
Therefore, we want to find out whether all these counted
diatonic pitch classes really correspond to the diatonic
notes of the key of the piece. If they do, the percentage
of diatonic pitch classes corresponds to the percentage of
diatonic notes in the piece of music. Furthermore, then a
simple method of spelling diatonic notes on the basis of
the key has been found. This is our next focus addressed
in section II.

The definition of the diatonic set has been extended by
some authors to include more pitches than just the ones
from the major and minor diatonic scale. In section III
we discuss what happens if we use this new definition
and ask ourselves the questions that we have before.

In the rest of the paper we look at the result of a pitch
spelling algorithm in the light of the above findings. Does
a specially developed pitch spelling algorithm perform
any better than the naive program that spells any pitches
according to the diatonic context it has been given? To be
able to have a close look on the notes in the music that
are not spelled correctly, we concentrate on one particular
pitch spelling model: the compactness model which has
been proposed earlier by the author [8]. A comprehensive
overview of this model is given in section IV. In section
V it is investigated which percentage of the diatonic notes
has been spelled correctly by this pitch spelling algorithm.
Since our hypothesis was that the diatonic notes are the
easiest to spell, we expect high percentages of correctly
spelled notes here. It is musically interesting to look at
the incorrectly spelled diatonic notes.

II. DIATONIC NOTES AND TRIVIAL SPELLINGS

Which percentage of the notes of a piece of music are
diatonic notes? In a first attempt to answer this question, a
program has been written that counts the number of pitch
numbers that correspond to the diatonic notes in a piece of
music. In fact, this program does not exactly answer the
question above, but answers the question of which per-
centage of the pitch classes in a piece of music correspond
to diatonic pitches. For a piece in C major, all the in-
stances of the pitch numbers 0, 2, 4, 5, 7, 9, 11 are counted
since they correspond to the notes C, D, E, F, G, A, B, C.
For a piece in a minor key, we decided to take into
account the notes from the natural minor scale, as well
as the notes from the melodic and harmonic minor scale.
Thus, for C minor, the instances of the pitch numbers
0, 2, 3, 5, 7, 8, 9, 10, 11 are counted since they correspond
to the notes C, D, E�, F, G, A�, A, B�, B. The algorithm
was applied to the preludes and fugues of the first book
of the Well-tempered Clavier by Bach. The percentages
of diatonic notes in each prelude and fugue are given
in table I. We see that the percentages lie between 85%

and 98% with an average of 92.69%, so we can conclude

that a fairly large percentage of notes from these pieces
consists of diatonic notes.

In the program, we did not take into account the
modulations that might be involved in the music. So, if a
piece of music is in C major, and it modulates to G major
and then back to C major, the notes G, A, B, C, D, E
from G major will be counted as diatonic notes according
to the program, since these notes are also present in the
key of C. Only the note F� (present in G major) is not
counted as a diatonic note since it does not appear in
the scale of C major. We can thus understand that we
miss some diatonic notes in other keys because of some
modulations in the piece, but this number turns out not
to be so big as we see from table I.

We can now wonder if the search space for pitch
spelling algorithms is really limited to the 7.31% of the
notes in these pieces, since this is the average percentage
of non-diatonic notes. Before answering this question,
which we attempt to do in section V, it is first important
to investigate if the pitches counted as diatonic pitches,
do indeed refer to diatonic notes in the music. Therefore
we calculate the percentage of diatonic notes that are
spelled correctly using the assumption that in a certain
key, every pitch class that is part of the diatonic set would
be translated to the corresponding note in the diatonic
set. That means that in C major, every pitch number 0

would be translated to a C, every 2 to a D, and so on.
We will refer to this spelling as the trivial spelling. For
every prelude and fugue the percentage of correct trivial
spelling is given in table I. Be aware that these percentage
of correct trivial spelling only address the spelling of the
diatonic notes, not of all notes in the piece of music.
Since we expected that this trivial spelling is usually the
correct spelling, it is surprising to find that four preludes
and fugues are not spelled 100% correctly. For example,
in fugue no. 10 (bwv 855b), one of the diatonic notes
was incorrectly spelled. The piece is in E minor, so the
diatonic notes encompass E, F�, G, A, B, C, C�, D, D�.
The note in the prelude that was spelled incorrectly was
pitch number 3 which should have been translated to an
E�, but was spelled as D� by the program, since this
note is within the set of diatonic notes. At the bar where
the spelling error occurred, the music has modulated to
G major (see [1]). The specific note (the E�) is part of
a downward chromatic melody (the E� leading to a D)
which is the reason that the note is spelled as an E� in
the music. The other errors include multiple B�’s spelled
as A� and a F�� spelled as G in B minor, and a D��
spelled as E in G� minor, which could all be explained
in a similar way as above from the music.

Despite the few errors in the (trivial) spelling of the
diatonic notes, the percentage of diatonic notes in a
piece of music is very high (92.69% on average) and
the percentage of correct trivial spelling does not sig-
nificantly differ from 100%. This suggests that the most
interesting part of the pitches to be spelled by a pitch
spelling algorithm is the approximately 7.3% of the notes
representing the non-diatonic notes. However, be aware
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that the process of spelling the diatonic notes is not a
trivial process although we have used the term ’trivial
spelling’. In spelling the diatonic notes above we used
the key information to know which note name to assign
to a pitch class, but key information is not present in the
input file for a pitch spelling algorithm. However, a lot of
research has been done in the area of key finding [4], [10],
[20], [12], [17] and for example the research by Chew
[4] shows us that the correct keys of all fugue subjects
of book I of the Well-tempered Clavier can be found
with the proposed algorithm. Moreover, she shows that
the program on average only needs 3.75 pitch events to
correctly determine the key. From this we may conclude
that determining the key of a piece of music can be fairly
well done, and combining a key-finding algorithm with
the trivial spelling procedure that was illustrated above,
provides us with an intuitive pitch spelling algorithm for
the diatonic pitches.

III. EXTENDING THE DIATONIC SET

Even if we leave modulations out for a moment and
consider a piece of music in one and the same key, one
could argue that the notes from a piece of music in
one key do not just come from one scale, as we saw
in the example above where an instance of a E� was
found in the key of G major. Some authors have tried to
formalize the idea that the key contains more notes than
just the scale of the tonic [19], [11]. Longuet-Higgins
[11] states that ”a note is regarded as belonging to a
given key if its sharpness relative to the tonic lies in
the range −5 to +6 inclusive”. The sharpness of a tone
refers to the digit that is attached to the note in fifth
ordering, starting with C = 0. Thus according to Longuet-
Higgins [11] the key of C should include the notes
D�, A�, E�, B�, F, C, G, D, A, E, B, F �. Using this ’new’
key-content, we could do the same as we did before. We
could calculate the percentage of diatonic pitches in each
piece of music using this new set of diatonic notes. How-
ever, it may be clear that it is not necessary to calculate
these percentages, because if we count the instances of the
pitch numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 correspond-
ing to the notes D�, A�, E�, B�, F, C, G, D, A, E, B, F �,
we will end up counting all notes of the piece. The
percentages of diatonic notes would all read 100%, due
to the fact that a note is defined for all 12 semitones in
the octave. It is however interesting to see how many
pitches would be spelled correctly if we would trans-
late the pitch numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 into
the notes C, D�, D, E�, E, F, F �, G, A�, A, B�, B respec-
tively, which would be the ’trivial’ spelling according
this new key context proposed by Longuet-Higgins. These
percentages are given in the 5th column of table I under
the heading LH. It can be seen from table I that the
percentages of correctness of this new trivial spelling
are fairly high (95.28% on average), and therefore this
method seems to be a good intuitive approach to spell
the pitches of a piece of music, given a certain key. Since
this intuitive method seems to work already quite well,
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Fig. 1. Tone space or Euler-lattice constructed from note names
and pitch numbers.

we are interested to compare these percentages with the
results of a real pitch speling model.

IV. THE COMPACTNESS PITCH SPELLING ALGORITHM

We will now give a comprehensive overview of the
compactness pitch spelling model proposed by Honingh
[8], since this pitch spelling algorithm will be used further
in this paper, to compare its note accuracy with the results
of the trivial spelling methods described above. The space
of pitches that is used in this method is known under the
name of Euler-lattice and can be represented in several
forms [7], [9]. In fig. 1 the Euler-lattices built from note
names and pitch classes are shown. On the horizontal axis,
the sequence of note names and pitch classes are ordered
in fifths, on the vertical axis, they are ordered in major
thirds. Both tone spaces can be expanded in horizontal
and vertical direction, but in fig. 1, only part of the space
is shown.

Projecting the tone space of pitch classes onto the tone
space of note names by mapping the number 0 onto
the note name C, it becomes clear that pitch class 1
indicates C� or D�, pitch class 2 indicates D or E��,
etc. This projection immediately shows the problem of
pitch spelling: when should pitch class 1 be translated as
C� and when as D�? These kind of problems hold for all
pitch classes 0 to 11, as may be clear from fig. 1.

The pitch spelling problem is now attacked using the
property of compactness2. The compactness of a set of
points in the lattice is defined here as the sum of the
Euclidean distances between all pairs of points. That
means that, the lower this value for compactness, the more

2Some other pitch spelling algorithms make also use of a related
concept to compactness [6], [18].
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TABLE I
THE PRELUDES AND FUGUES FROM BOOK I OF THE WELL TEMPERED CLAVIER BY BACH, EXPLORED USING VARIOUS MEASURES DESCRIBED

IN THE TEXT.

WTC no. key % of diatonic
notes

% of triv-
ial correct
spelling

LH % of correct
spelling using
compactness
algorithm (n = 6)

% correct spelling
of diatonic notes
with compactness
algorithm (n = 6)

1a C ma 93.08 100 99.27 99.45 100
1b C ma 91.77 100 97.26 99.45 100
2a C mi 94.23 100 100 99.63 99.71
2b C mi 95.74 100 100 99.20 99.17
3a C� ma 91.23 100 97.90 99.13 99.73
3b C� ma 91.34 100 97.16 99.43 100
4a C� mi 95.90 100 100 97.72 98.42
4b C� mi 94.43 100 99.77 99.69 99.92
5a D ma 85.93 100 97.35 98.61 99.68
5b D ma 96.11 100 99.48 100 100
6a D mi 92.35 100 99.87 97.32 98.62
6b D mi 91.61 100 99.86 98.46 98.63
7a E� ma 91.21 100 97.73 99.79 100
7b E� ma 91.54 100 95.82 98.98 99.88
8a E� mi 92.36 100 99.71 98.24 99.05
8b D� mi 94.85 100 100 98.98 99.54
9a E ma 86.94 100 97.39 99.05 100
9b E ma 94.54 100 98.36 99.86 99.45
10a E mi 94.60 100 100 99.13 99.59
10b E mi 89.63 99.86 98.27 99.01 99.80
11a F ma 88.29 100 93.18 99.48 100
11b F ma 93.55 100 96.55 99.40 99.15
12a F mi 93.25 100 99.80 98.41 99.00
12b F mi 92.13 100 99.62 98.32 99.45
13a F� ma 91.04 100 96.02 99.50 100
13b F� ma 94.14 100 98.36 99.77 100
14a F� mi 97.68 100 100 99.01 99.66
14b F� mi 92.94 100 99.73 98.76 98.67
15a G ma 86.33 100 94.73 91.43 90.84
15b G ma 90.18 100 96.98 99.35 99.93
16a G mi 93.63 100 100 98.88 99.20
16b G mi 95.18 100 100 97.99 98.87
17a A� ma 95.16 100 100 100 100
17b A� ma 92.98 100 97.28 99.55 99.76
18a G� mi 94.58 100 99.82 99.10 99.62
18b G� mi 92.23 99.86 99.00 99.75 99.86
19a A ma 92.37 100 98.18 99.34 99.82
19b A ma 92.15 100 97.44 99.23 99.81
20a A mi 92.76 100 99.67 96.88 98.23
20b A mi 93.51 100 99.83 98.95 99.19
21a B� ma 91.61 100 98.26 100 100
21b B� ma 92.28 100 96.41 99.58 99.89
22a B� mi 96.52 100 100 99.10 99.20
22b B� mi 93.99 100 99.04 99.32 99.56
23a B ma 91.85 100 97.60 99.76 100
23b B ma 93.42 100 98.78 99.88 100
24a B mi 95.69 99.71 99.72 99.03 99.27
24b B mi 90.29 99.81 98.49 98.10 99.32
average 92.69 100 95.28 98.98 99.43

compact the set is. The model we will describe, is based
on two very simple rules. When the music is segmented
into small sets of notes,

1) Choose the spelling that is represented by the most
compact set.

2) Among the sets that are equally compact, the set
that is closest in key to the previous set is chosen

In the pitch class tone space there is always more than
one set with the same shape and therefore the same com-

pactness. These sets correspond to sets in the note name
space that have been transposed a diminished second up
or down from each other.

The two pitch spelling rules can be summarized by
one principle, that of compactness, since the second rule
selects the set that forms together with the previous set
the most compact structure. For the first set of the piece,
among the equally compact sets, the set that has the
projection on the note name space with the least number
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Fig. 2. First bar from Fugue II from Bach’s Well-tempered
Clavier book I.
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Fig. 3. Encoding of first bar from Fugue II from Bach’s Well-
tempered Clavier.

of accidentals is chosen. For the sets thereafter, we would
want to choose the set which is closest in key (number of
accidentals) to the preceding set. However, if the music
is segmented in very small sets, and there is a sudden
change of key, this may not work properly. Therefore, the
average is calculated between the number of accidentals
in the previous set and the sets before that set.

In fig. 3 an example is given of the pitch spelling
process of the first bar from Fugue II from Bach’s Well-
tempered Clavier book I. This bar is displayed in fig.
2. The notes of this bar, given in pitch classes are:
0, 11, 0, 7, 8, 0, 11, 0, 2. From the most compact sets, the
one with the least number of accidentals is chosen, as
can be seen from the projection in fig. 3. This set,
C, B, C, G, A�, C, B, C, D indeed represents the correct
notes from the first bar of the fugue.

To spell a whole piece of music, each MIDI file is
segmented in sets each consisting of n notes, and each
set is spelled according to the process described above. If
the number of notes the whole musical piece consists of,
is not a multiple of n, the last pitches are undetermined.
To overcome this problem, after the last set of n pitches,
the remainder of pitches form a set (which contains less
than n pitches) to be spelled using the same algorithm.

To illustrate the performance of the compactness al-

TABLE II
RESULTS FOR THE COMPACTNESS PITCH SPELLING ALGORITHM, AS

A FUNCTION OF THE NUMBER OF NOTES n USED IN THE

SEGMENTATION.

n percentage correctly spelled notes
1 65.76 %
2 96.57 %
3 96.42 %
4 98.80 %
5 98.58 %
6 98.98 %
7 99.21 %

gorithm, we show here the performance on the preludes
and fugues of Bach’s Well-tempered Clavier. Results are
given in table II for n ranging from 1 to 7, where n is the
number of notes in the set being considered. For n = 1,
the algorithm reduces to rule no. 2, since the compactness
of one single point always equals zero. It is therefore
interesting to see that, by considering the compactness of
only two notes, the result increases already with around
30%. Since the algorithm requires time exponential in n,
n = 7 is the practical limit here3. From table II it can
be seen that the best performance occurs at n = 7. The
worst performance is (if n = 1 is not taken into account)
for n = 3.

V. PITCH SPELLING PERFORMANCE ON DIATONIC
NOTES

We compare the note accuracy of the compactness
algorithm with the percentage of diatonic notes in a piece,
in order to see if the pitch spelling algorithm spelled
more notes correctly than only the diatonic notes. The per-
centage of correct spelling according to the compactness
algorithm with n = 6 can be found in table I. Comparing
these percentages with the percentages of diatonic notes,
we can see that the compactness algorithm spells indeed
more notes correctly (98.98% on average) than just the
diatonic notes (92.69% on average). Furthermore, the
pitch spelling algorithm does also perform better than the
intuitive spelling method using the proposed extension of
the diatonic scale.

It is not yet clear if all diatonic notes are spelled cor-
rectly according to this algorithm. Therefore, in column 7
of table I we have calculated the percentages of correctly
spelled diatonic notes using the compactness algorithm
with n = 6. Since these percentages clearly do not all
read 100%, the pitch spelling algorithm did not spell all
diatoninc notes correctly. This is a surprizing result, since
our hypothesis was that the diatoninc notes are the ones
that are most easy to spell. This pitch spelling algorithm
performs worse on diatonic notes than the naive ’trivial
spelling’ approach combined with a key finding program
does, as described at the end of section II. In table III the

3Some approaches of dynamical programming have already been
incorporated in the algorithm. Current investigations try to optimize the
algorithm further.
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average values of these percentages calculated with other
values for n can be found as well. For higher values of
n, more diatonic notes are spelled correctly, although the
results do not show a linear correlation.

From these results, we don’t know yet which part
of all errors made by the pitch spelling algorithm, are
incorrectly spelled diatonic notes, and which part are
incorrectly spelled non-diatonic notes. We have therefore
calculated the percentages of diatonic notes among the
incorrectly spelled notes by the compactness algorithm.
This last experiment has been rerun a couple of times,
for different values of n. In table III the average results
of these experiments can be found for different n. The
observation that the majority of the incorrectly spelled
pitches consist of diatonic pitches can be labeled as
surprising, given our expectation that diatonic notes are
easier to spell than non-diatonic notes. We observe that
the percentages roughly decrease as n increases, so the
set of incorrectly spelled notes consists more and more
of non-diatonic notes as n increases. We also know that
the overall performance of the algorithm increases with
n (see table II), so we can conclude that the better
the performance, the more the amount of incorrectly
spelled notes consist of non-diatonic notes, which are the
notes that are most difficult to spell, according to our
hypothesis.

TABLE III
AVERAGE PERCENTAGES OF (A) CORRECTLY SPELLED DIATONIC

NOTES, AND (B) PITCH CLASSES CORRESPONDING TO DIATONIC

NOTES AMONG THE TOTAL NUMBER OF INCORRECTLY SPELLED

NOTES.

n a: percentage correct
spelling of diatonic
pitches

b: percentage diatonic
pitches among incorrectly
spelled notes

2 97.14 % 77.32 %
3 96.97 % 78.31 %
4 99.23 % 59.20 %
5 98.98 % 66.78 %
6 99.43 % 51.90 %

The incorrectly spelled diatonic notes are due to the
character of the pitch spelling algorithm. To give one
example, in the fourth prelude in C� minor, the program
spells a B� as a C because the 6-note set in which the
note appears describes a more compact region in the Euler
lattice if spelled as C�, C, C�, A, E, F � than if spelled as
C�, B�, C�, A, E, F �.

The fact that the compactness algorithm has a low note
accuracy for the diatonic notes does not mean that it is a
bad pitch spelling algorithm; it is clearly not, since it can
compete with other proposed pitch spelling algorithms
[8]. It does mean that there might be an easy way to
improve the overall performance of this algorithm by
separating the diatonic notes from the non-diatonic notes.

VI. CONCLUDING REMARKS

In this paper we raised the question whether the search
space for pitch spelling algorithms could be limited, so

as to arrive at a better understanding of the pitch spelling
problem and to get a more meaningful evaluation measure
of pitch spelling algorithms. We motivated that diatonic
notes are usually easier to be spelled than non-diatonic
notes. However, even the so-called trivial spelling of the
diatonic notes did not always read 100%. Extending the
definition of the diatonic set, we saw that an intuitive
method of pitch spelling was created, if implemented
together with a key-finding algotithm.

We have seen that not all diatonic notes are spelled
correctly by the compactness pitch spelling algorithm.
In fact, the majority of the errors made by the pitch
spelling program consisted of diatonic notes. The fact that
the compactness pitch spelling algorithm has problems to
spell some diatonic notes does not mean that this is the
case for other pitch spelling algorithms as well. Therefore
it would be interesting to include other pitch spelling
algorithms in this survey which will be a direction of
future research.

We can conclude that the generally used method of
comparing pitch spelling models by their note accuracy,
cannot be replaced by measuring the proportion of notes
spelled correctly among the non-diatonic notes without
losing a lot of information. However, to give a more com-
plete evaluation of pitch spelling methods, we propose
that this measure plus the information of the percentage of
diatonic notes among the incorrectly spelled notes should
be added to the standard evaluation method of pitch
spelling algorithms. In this way a number of different
measures is given to give the reader a more complete
picture of the performance of the pitch spelling algorithm.
Furthermore, it could then be much clearer to see what
different pitch spelling algorithms could ’learn’ from each
other. If one algorithm would for example spell virtually
all diatonic pitches correct, and another algorithm all
non-diatonic pitches, these two algorithms could serve as
complements of each other.
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